Algebra Test Practice pt 2

Part 2 will focus on:

5. Linear Equations in One Variable
6. Exponents and Radicals
7. Rational Expressions
8. Linear Equations in Two Variables

Solve for x in the equation: $2(x-3)=7$	
A. 5	C. 13
B. $\frac{11}{2}$	D. $\frac{13}{2}$

Second, we add 6 to both sides of the equation

$$
\begin{gathered}
2 x-66=7 \\
+86+6 \\
\hline 2 x=13
\end{gathered}
$$

Finally, we divide both sides of the equation by 2

Thus, | $\frac{\angle x}{\not 2}$ | $=\frac{13}{2}$ |
| ---: | :--- |
| x | $=\frac{13}{2}$ |

Hint:

Linear Equations in One Variable 3-7

Undo with opposite of PEMDAS
Easier to distribute first.
2.

Solve for x in the equation: $3(x+5)-4(x+1)=18$
A. -7
C.
12
B. 7
D.

First, we multiply or distribute the coefficient of the binomial terms to

HINT:
Distribute first.
clear the parentheses.

Thus
Then, we combine like terms.

Then, we subtract 7 from both sides.

$$
-x+11=18
$$

$$
\begin{gathered}
-11-11 \\
\hline-x=7
\end{gathered}
$$

Finally, we multiply both sides by -1

Thus:
$x=-7$

Solve for x in the equation: $\frac{x}{2}-1=\frac{x}{3}+2 \frac{1}{6}$
A. $3 \frac{1}{6}$
c.
-19
B. 14
19

HINT 1:

Turn 2 and $1 / 6$ into an improper fraction.

HINT 2:

$$
\begin{aligned}
& \text { Multiplying both sides by } L C D=6: \frac{6}{1}\left(\frac{x}{2}-\frac{1}{1}\right)=\frac{6}{1}\left(\frac{x}{3}+\frac{13}{6}\right) \\
& 3 x-6=21 x+13 \\
& \text { Subtracting } 2 \times \text { from both sides: } \\
& \text { Adding } 6 \text { to both sides: } \\
& \text { Thus: }
\end{aligned}
$$

Get rid of fractions by multiplying LCD to all terms

Which of the following is equivalent to: $\frac{1}{x}-1=\frac{-1}{4}$
A. $\frac{1}{x}=-1 \frac{1}{4}$
B. $x=\frac{3}{4}$
C. $\frac{1}{x}=1 \frac{1}{4}$
D. $x=1 \frac{1}{3}$

$$
4=-1 x+4 x
$$

$$
4=3 x
$$

HINT:
Multiply each term by $4 x$.

$$
4-4 x=-1 x
$$

$$
4 / 3=x
$$

Get rid of fractions by multiplying
LCD to all terms

$$
\text { If } y=2 x-5 \text { then solve for } x \text { in terms of } y
$$

A. $x=\frac{y-5}{2}$
B. $x=\frac{1}{2} y+5$
C. $x=y+\frac{5}{2}$
D. $x=\frac{y+5}{2}$

Solve for x in terms of y means:
Get x on one side alone.

First, we solve for $2 x$ by adding 5 to both sides of the equation

$$
\begin{array}{r}
y=2 x-5 \\
+5 \quad+5 \\
\hline y+5=2 x
\end{array}
$$

Then, we divide both sides of the equation by 2

$$
\frac{y+5}{2}=\frac{\not Z x}{\not 2}
$$

Thus:

$$
\frac{y+5}{2}=x
$$

Exponents: 8 squared and then cube root. So $8 \times 8=64$. The cube root of 64 is 4 (remember that $4 \times 4 \times 4=64$)

$$
8^{\frac{-2}{3}} ?
$$

You aren't finished because a negative as an exponent means take the reciprocal. So, 4 becomes: $1 / 4$

Exponents and Radicals 9-15

```
Which of the following is equivalent to \(27^{-\frac{2}{3}}\) ?
A. -9
B. -18
C. \(\frac{-1}{9}\)
D. \(\frac{1}{9}\)
```

The cube root of 27 is 3 .

3 squared is 9.
Negative in the exponent means reciprocal so answer is:

1/9.
2.
Which of the following is equivalent to: $\sqrt{\mathbf{2}}(\sqrt{\mathbf{5 0}}-\sqrt{\mathbf{8}})$

A. 6	C. $\sqrt{84}$
B. $\sqrt{2} \sqrt{42}$	$3 \sqrt{2}$

HINT 1:

Distribute or factor to make perfect squares if possible.

$$
\begin{aligned}
\sqrt{2}(\sqrt{50}-\sqrt{8}) & =\sqrt{100}-\sqrt{16} \\
& =10-4 \\
& =6
\end{aligned}
$$

2 b .

Which of the following is equivalent to: $\sqrt{2}(\sqrt{\mathbf{1 8}}-\sqrt{\mathbf{2}})$
A. 4
B. $4 \sqrt{2}$ C. 2 B. $\sqrt{32}$

$$
\begin{aligned}
& =\sqrt{36}-\sqrt{4} \\
& =6-2 \\
& =4
\end{aligned}
$$

$$
\text { Which of the following is equivalent to }(2-\sqrt{3})^{2} ?
$$

A. $7-4 \sqrt{3}$
B. 7
C. $1-4 \sqrt{3}$
D. $7+4 \sqrt{3}$

HINT:

$$
\begin{aligned}
& =(2-\sqrt{3})(2-\sqrt{3}) \\
& =4-2 \sqrt{3}-2 \sqrt{3}+\sqrt{9} \\
& =4-2 \sqrt{3}-2 \sqrt{3}+3 \\
& =7-4 \sqrt{3}
\end{aligned}
$$

Simplify: $\sqrt{27}+\sqrt{75}$

THINK: Can I make perfect squares?

$$
\begin{aligned}
& =\sqrt{9} \sqrt{3}+\sqrt{2} 5 \sqrt{3} \\
& =3 \sqrt{3}+5 \sqrt{3} \\
& =8 \sqrt{3}
\end{aligned}
$$

4b.

$$
\text { Simplify: } \sqrt{18}+\sqrt{12}
$$

A. $9 \sqrt{2}+4 \sqrt{3}$
c. $5 \sqrt{5}$
B. $3 \sqrt{2}+2 \sqrt{3}$
D. $\sqrt{30}$

$$
\begin{aligned}
& =\sqrt{9} \sqrt{2}+\sqrt{4} \sqrt{3} \\
& =3 \sqrt{2}+2 \sqrt{3}
\end{aligned}
$$

5.

Simplify: $\frac{\sqrt{18}}{4}+\frac{\sqrt{32}}{3}$
A. $\frac{7 \sqrt{2}}{12}$
B. $\frac{25 \sqrt{2}}{12}$
C. $\frac{\sqrt{18}+\sqrt{32}}{7}$
D. $\frac{\sqrt{18}+\sqrt{32}}{12}$

HINT:

USE LCD to eliminate denominator.

Then can you find perfect squares?

$$
\operatorname{LCD}=12, \text { thus: } \quad \frac{\sqrt{18}}{4}+\frac{\sqrt{32}}{3}=\frac{3 \sqrt{18}}{12}+\frac{4 \sqrt{32}}{12}
$$

$$
\text { Simplifying the radical we have: }=\frac{3 \sqrt{9} \sqrt{2}}{12}+\frac{4 \sqrt{16} \sqrt{2}}{12} \text { Detail }
$$

$$
=\frac{3(3) \sqrt{2}}{12}+\frac{4(4) \sqrt{2}}{12}
$$

$$
=\frac{9 \sqrt{2}}{12}+\frac{16 \sqrt{2}}{12}
$$

$$
=\frac{25 \sqrt{2}}{12}
$$

Rational Expressions 17-19

1.
```
For all }x\not=4; \frac{\mp@subsup{x}{}{2}-9x+20}{x-4}\mathrm{ is equal to which of the following
expressions?
```

A. $\frac{(x+5)(x+4)}{(x-4)}$
c. $\frac{(x-5)(x+4)}{x-4}$
B. $x-5$
D. $x+5$

To do this we look for two factors of 20 whose sum is -9 . These factors are -4 and -5 .

$$
\text { Therefore for all } \begin{aligned}
x \neq 4: \frac{x^{2}-9 x+20}{x-4} & =\frac{(x-5)(x-4)}{(x-4)} \\
& =x-5
\end{aligned}
$$

2.

$$
\text { For all } x \neq \pm 6 ; \frac{x^{2}-x-42}{x^{2}-36}=?
$$

A. $\frac{x-7}{x-6}$
c. $\frac{x-7}{x+6}$
B. $\frac{x+7}{x-6}$
D. $\frac{x+7}{x+6}$

We factor the numerator and the denominator and then we cancel any common factor.

To factor $x^{2}-x-42$, we look for factors of -42 whose sum is -1 . These factors are -7 and 6 .

To factor $x^{2}-36$, we use $a^{2}-b^{2}=(a+b)(a-b)$.
Therefore, for all $x \neq \pm 6: \frac{x^{2}-x-42}{x^{2}-36}=\frac{(x-7)(x+6)}{(x-6)(x+6)}$
$=\frac{x-7}{x-6}$

| The following rational expression
 the following? $(\mathbf{a} \neq \mathbf{b})(\mathbf{a} \neq \mathbf{0})$ | $\frac{\mathbf{6 \mathbf { a } ^ { 2 }}}{\frac{\mathbf{a}-\mathbf{b}}{\mathbf{a}-\mathbf{b}}}$ |
| :---: | :---: | is equivalent to which of

Keep Divide Flip:

$$
\begin{aligned}
& =\frac{6 a^{2}}{a-b} \div \frac{a-b}{2 a} \\
& =\frac{6 a^{2}}{a-b} \cdot \frac{2 a}{a-b} \\
& =\frac{12 a^{3}}{(a-b)^{2}}
\end{aligned}
$$

$Y=N+b$

IINEAR EQUATIONS:

What is the slope of the following linear equation:

 $3 x+2 y=5$?A. $\frac{3}{2}$
c. 3
B. $\frac{-3}{2}$
D. -3

Isolate the y :

$$
2 y=-3 x+5
$$

Second, we solve for y (divide both sides by 2)

$$
\begin{array}{rcc}
\frac{Z y}{z}=\frac{-3 x+5}{2} & & \\
& & \\
& y & =\frac{-3}{2} x+\frac{5}{2}
\end{array}
$$

Then, we identify the slope as the coefficient of the \times term.
Thus, the slope is: $\frac{-3}{2}$
2.
Given the following table of points that all lie on the same line, which
of the following expresses the linear relationship between x and y ?

x	0	10	20	30
y	25	$\mathbf{4 5}$	$\mathbf{6 5}$	$\mathbf{8 5}$

A. $x+y=25$	C. $y=2 x+25$
B. $y=\frac{1}{2} x+25$	D. $2 x+y=25$

HINT:

Plug in x and y. What works?

\mathbf{x}	$2 \mathbf{2}+25$	\mathbf{y}
0	$2(0)+25$	25
10	$2(10)+25$	45
20	$2(20)+25$	65
30	$2(30)+25$	85

ANS is C
3.

Find the slope ' m ' and the y-intercept ' b ' of the line
$2 x+3 y=6$
A. $m=\frac{2}{3} \quad b=2$
B. $m=-2 \quad b=6$
C. $m=2 \quad b=6$
D. $m=\frac{-2}{3} \quad b=2$

$$
y=\frac{-2}{3} x+2
$$

Third we identify the slope as the coefficient of the x term and the y-intercept as the constant.

Thus: $\mathrm{m}=\frac{-2}{3}$ and $\mathrm{b}=2$
4. Which of the following is the equation of the line through the points ($1,-1$) and ($-2,5$) ?
A. $O y=-2 x+1$
B. $y=-2 x-1$
C. $y-1=-2(x-1)$
D. $y-5=\frac{-4}{3}(x+2)$

Using the point-slope form $y-y_{0}=m\left(x-x_{0}\right)$ where \boldsymbol{m} is the slope and $(\times 0, y 0)$ is any point on the line.

To find the slope we use the formula:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are any two points on the line.

$$
\begin{aligned}
& \text { Let }\left(x_{1}, y_{1}\right)=(1,-1) \text { and }\left(x_{2}, y_{2}\right)=(-2,5) \\
& \text { Thus: } \quad m=\frac{5-(-1)}{-2-1}
\end{aligned}
$$

$$
m=-\frac{6}{3}
$$

$$
m=-2
$$

Taking ($\times 0, y 0$) $=(-2,5$) and $m=-2$ and substituting into the point-slope form we have:

$$
\begin{aligned}
y-5 & =-2(x+2) \\
y-5 & =-2 x-4 \\
y & =-2 x+1
\end{aligned}
$$

MISC

Marcia has taken three out of the four tests in her English class. She received grades of 85,94 and 88 . What grade will she need on the fourth test to have a 90 average for the four tests?

```
A.
```

C. 89
B. 89.25
D. 91

$\frac{85+94+88+x}{4}=90$

Thus, Marcia will have to earn a grade of 93 on her fourth test to obtain an average grade of 90 .

```
Find the third of three consecutive integers such that the sum of the second and the third is 39 more than the first
```

A.
20
C.
14
B. 38
D. 36

Consecutive:

We can represent the three consecutive integers as:

- First $=n$
- Second $=n+1$
- Third $=\mathrm{n}+2$

The statement that, the sum of the second and third is 39 more than the first, results in the following equation:

$$
(n+1)+(n+2)=n+39
$$

Simplifying:

$$
2 n+3=n+39
$$

$$
2 n-n=39-3
$$

$$
n=36
$$

The three consecutive numbers are $36,37,38$ and thus, the third is 38 .

NOW..harkyacgaito: hig//hosbsanyedy/oon/compors/dgadahtm

Farmappate. .

 http://www.highlands.edu/site/tutorial-center-compass-test-practice

